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Abstract

Colorectal cancer (CRC), like all other cancers, results from genetic and epigenetic alterations of the genome. The mechanisms
leading to epigenetic alterations include DNA methylation, histone modifications, and small non-coding RNAs. As shown in
many studies, some histone modifications such as acetylation, methylation, and phosphorylation are reported to be altered in
CRC. Since these epigenetic alterations are reversible, they can be targeted as a strategy for CRC treatment. Numerous studies
demonstrate the effects of molecules (both natural and synthetic) as inhibitors of enzymes responsible for histone acetylation,
methylation, and phosphorylation in CRC cell lines. Some of these molecules have reached clinical trial stages. Vorinostat and
belinostat, as histone deacetylase inhibitors; pinometostat and ribavirin, as histone methyltransferase inhibitors; and stauro-
sporine and barasertib, which target histone phosphorylation, are among the promising epigenetic modifiers targeting histone
alterations. Some of these modifiers can be used alone or in combination with other anticancer drugs or radiotherapy to in-
crease efficacy. This review aims to identify molecules that target enzymes responsible for altering acetylation, methylation,

and phosphorylation of histones in CRC.

Introduction

Cancer, in particular colorectal cancer (CRC), is a result of genetic
and epigenetic dysregulations.! The epigenetic modifications that
can be caused by three main mechanisms, DNA methylation, his-
tone modifications, and non-coding RNAs, lead to the alteration of
the expression of genes involved in cancer (oncogenes and tumor
suppressor genes (TSGs)).2 Researchers increasingly believe that,
since epigenetic alterations are, unlike genetic alterations, revers-
ible, they could be a promising target for the development of novel
anticancer therapies. In fact, molecules that can inhibit these alter-
ations may restore the normal expression of oncogenes and TSGs.
DNA methyltransferase inhibitors (DNMTis) that target DNA
methylation alterations, and histone deacetylase (HDAC) inhibi-
tors (HDAC:s) that target histone acetylation, are the most studied
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in this sense. Some of these molecules are already approved for use
in the treatment of certain cancers. Decitabine (used in the treat-
ment of myelodysplastic syndrome) and 5-azacytidine (used in the
treatment of acute myeloid leukemia) are among the DNMTis.?
Additionally, among HDAC:s, vorinostat and belinostat are both
used in the treatment of hematological cancers with less severe
side effects.*

In this review, we first highlight the most extensively studied al-
terations of histone acetylation, methylation, and phosphorylation
involved in CRC. We then propose a selection of molecules that
may serve as epigenetic modifiers, either alone or in combination,
targeting these alterations in the treatment of CRC.

Histone modifications in CRC

Histones are a family of basic proteins that are rich in lysine and
arginine, around which DNA filaments are tightly wrapped to form
chromatin in the nucleus of eukaryotic cells. Besides DNA meth-
ylation, histone modification is one of the most studied epigenetic
mechanisms. It has been well demonstrated that histone modifica-
tions play a key role in the pathogenesis of many diseases, particu-
larly cancer.>- Additionally, it has been reported that acetylation
and methylation of lysine and arginine residues of histones are
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associated with the clinicopathological features of CRC. For ex-
ample, methylation of lysine 9 on histone H3, acetylation of lysine
27 on H3, and acetylation of lysine 12 on H4 have been shown to
be increased in CRC tissues compared to normal mucosal cells.®
On the other hand, according to the results of chromatin immu-
noprecipitation analysis performed on circulating nucleosomes,
trimethylation of lysine 9 on H3 and trimethylation of lysine 20
on H4 were shown to be decreased in patients with CRC compared
to healthy individuals.” Other epigenetic alterations of histones re-
ported to be involved in CRC include phosphorylation (decrease of
phosphorylation of Histone H3 at Ser10 (H3S10ph) and increase
of H2AX),%? sumoylation (decrease of SUMO El and E3, and
the sole SUMO E2 enzyme Ubc9),!” ADP-ribosylation (H3R117
mono-ADP-ribosylation),!" neddylation (Ned HuR and Ned NF-
«B),'? and ubiquitination (decrease of H2Bub1).!3! Table 1 below
summarizes some of the most extensively studied epigenetic modi-
fications of histones involved in CRC.15-33

Epigenetic modifiers of histone alterations in CRC

Epigenetic modifiers of histone acetylation in CRC (HDAC and
histone acetyltransferase (HAT) inhibitors)

Histone acetylation

The entire genome of a eukaryotic organism is condensed into
chromatin in the nuclei. The basic unit of chromatin, called the
nucleosome, is made up of 147 DNA base pairs wrapped around a
core protein octamer called histone.3* These proteins include his-
tones H2A, H2B, H3, and H4. Histone H1, located outside of the
core octamer, can regulate chromatin fibers in higher-order struc-
ture.3 Heterochromatin, which refers to condensed (closed state)
chromatin, and euchromatin, which refers to loosely packed (open
state) chromatin, are the two major higher-order structures of chro-
matin. Euchromatin is more accessible to transcription factors and
RNA polymerase.33¢ Thus, alteration of chromatin state by DNA
methylation or histone modifications impacts gene expression by
making certain genes more or less available for transcription.37-3%
Histone acetylation, the most studied mechanism of histone modi-
fications, plays a key role in the regulation of gene expression.3%40
In fact, the acetylation of lysine residues (Kac) on histone tails
neutralizes the positive charge on the g-amino group of the lysine
residues, leading to the unwinding of tightly coiled heterochro-
matin, which makes the chromatin be in an accessible state (eu-
chromatin).*! Additionally, the inner pore space of chromatin is
increased by histone acetylation, which alters spatial distance and
accessibility during interphase, and ensures sufficient space for lo-
cal initiation and elongation.*?*3

HATs and HDACs are the enzymes responsible for histone
acetylation and deacetylation, respectively. It has been confirmed
that HDAC:s are expressed by different types of tumors and are in-
volved in carcinogenic events, such as chromosomal translocation-
mediated oncogenic protein fusion.*443

Classification of HDACs and HATs

Eighteen (18) human HDACs have been identified and divided
into four (4) classes. HDAC class 111 is nicotinamide adenine di-
nucleotide (NAD)*-dependent, while classes I, II, and IV are zinc-
dependent.*® The identified HATs include the P300/CBP, GNAT,
MYST, P160, PCAF, and TAFII230 families.#” The different
HDAC: are classified according to their respective length and mo-
lecular weight in the following diagram (Fig. 1).
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HDACs and HAT: involved in CRC

Table 2 below summarizes the histone acetylation enzymes (HDACs
and HATs) reported to be involved in CRC.48-58

Epigenetic modifiers of histone acetylation in CRC

HDAC inhibitors in CRC

Many preclinical studies and clinical trials have reported the im-
portant effect of HDAC:s as therapeutic agents in different cancers.
These epigenetic modifiers can significantly limit tumor growth,
restrain aberrantly proliferated vessels,” induce DNA damage,
cell cycle arrest, apoptosis, and autophagy to promote cancer cell
death.% It has been shown that HDACis can inhibit the prolifera-
tion of different trans

formed cells in vitro such as lymphoma, leukemia, myeloma,
and non-small cell lung carcinoma. They can also stop tumor pro-
gression in many solid and hematological tumors. In addition,
these HDACis can modulate the immune response and decrease
angiogenesis.f!

Vorinostat (SAHA)

Vorinostat (N-hydroxy-N’'-phenyl-octanediamide) was among
the first HDAC inhibitors approved by the FDA in 2006 to treat
CTCL (cutaneous T-cell lymphoma) (Fig. 2). Vorinostat inhib-
its all classes of HDAC enzymes except class I11.°2 It has been
reported that this molecule has a promising effect on gastroin-
testinal cancers and metastatic CRC in combination with 5-fluo-
rouracil (5-FU). Vorinostat has an ID;, of 10 nM and 20 nM for
HDACI and HDACS3, respectively. Vorinostat induces cellular
apoptosis. o

Valproate (VPA) (an HDACi and DNMTi)

Valproic acid is a drug used for the treatment of seizure disor-
ders, including epilepsy (Fig. 2). It acts as an inhibitor of GABA
transaminase, leading to the blocking of voltage-gated sodium
channels and T-type calcium channels.®* Recently, it has been
reported that this molecule could affect chromatin remodeling.
In fact, VPA can alter gene expression through epigenetic marks
such as histone acetylation and DNA methylation.®*%5 It has been
demonstrated that VPA can bind to class I HDAC catalytic sites
and inhibit their activity, which leads to histone acetylation, in
particular at the lysine 9 residue of histone H3 and the lysine
8 residue of histone H4.%° H4 hyperacetylation activates cell
cycle arrest and apoptosis. VPA can also promote proteasomal
degradation of HDAC2. In fact, it has been shown that in the
HeLa (human cervical carcinoma) cell line, histone H4 hypera-
cetylation induced by treatment with 3.0 mM VPA for 24 h led
to upregulation of more than 1,074 genes, some of which are
related to the cell cycle, cell signaling, pyruvate dehydrogenase
kinase 4, and ATPase class V, and downregulation of 551 genes
including those related to importin 8, Fas apoptotic inhibitory
molecule, and cyclin B1.%7 In another study, in rat neurons treated
with VPA, hyperacetylation of H3 and H4 was found only in the
promoters of 726 upregulated genes, including genes involved in
epileptogenesis. o

Regarding the role of this molecule in CRC, Strey et al.% re-
ported that VPA exerts an anti-neoplastic effect in many colorec-
tal tumor cell lines (Caco-2, SW-480, CX-1, and WIDR) in vitro
by altering cell cycle regulation (cycle proteins cdkl1, cdk2, cdk4,
cyclin D, cyclin E, p19, p21, and p27 were altered). In fact, this
molecule inhibits cell growth and induces cell cycle arrest by the
upregulation of H3 and H4 acetylation. Furthermore, tests in vivo
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Table 1. Histone modifications involved in CRC
Histone modification Status in CRC tlssqe €OM" " \What the histone modification is associated with i
pared to normal tissue ence
Histone acetylation
Global acetylation of Increased Poor overall survival and poor prognosis 15
H3 (Global H3ac)
Global acetylation of Decreased Well differentiation and Progression of CRC 16
H4 (Global H4ac)
Acetylation of lysine Increased Promotes cell proliferation and differentiation 17
27 on H3 (H3K27ac)
Acetylation of lysine Decreased Progression of CRC 18
12 on H4 (H4K12ac)
Acetylation of lysine Decreased Significantly associated with the histological type of CRC 19
9 on H3 (H3K9ac)
Acetylation of lysine Decreased Progression of CRC 18
18 on H3 (H3K18ac)
Acetylation of lysine Decreased Better survival of CRC patients and a low- 20
56 on H3 (H3K56ac) er chance of tumor recurrence
Acetylation of lysine Decreased Better survival of CRC patients and a low- 16,21
16 on H4 (H4K16ac) er chance of tumor recurrence
Histone methylation
Methylation of lysine Increased Specifically elevated in aggressive CRC tissues and positively 22
9 on H3 (H3K9me3) correlated with lymph node metastasis in CRC patients
Dimethylation of lysine Increased High H3K4me?2 is dramatically associated with CRC clin- 15
4 on H3 (H3K4me2) icopathological factors, including deeper tumor in-
vasion and advanced pathological stage
Trimethylation of lysine Decreased Associated with transcriptionally active genes 21,23
4 on H3 (H3K4me3) and may lead to genomic instability
associated with variant enhancer loci in the CRC transcriptome
Dimethylation of lysine Increased Poorer overall survival time of patients with gastric cancer 24
9 on H3 (H3K9me2)
Dimethylation of lysine Increased The H-scores of H3K27me2 were lower in the liver metastases than 25,26
27 on H3 (H3K27me2) in the corresponding primary tumors. H3K27me2 in the primary
tumors correlated with tumor size. Lower levels of H3K27me2 in the
primary tumors correlated with poorer survival rates (P = 0.039)
Trimethylation of Lysine Increased Positively correlated with the metastasis-free survival of 25,27
27 on H3 (H3K27me3) CRC patients and a low H3K27me3 level predicted a poor
outcome upon chemotherapeutic drug treatment
Dimethylation of lysine Decreased H3K36me2 in the primary tumors correlated with histologi- 25,26
36 on H3 (H3K36me2) cal type (P =0.038), and lymph node metastasis (P = 0.017)
Dimethylation of lysine Increased High DOT1L expression and H3K79me2 lev- 28,29
79 on H3 (H3K79me2) els were associated with poor patient survival
Dimethylation of lysine Decreased The low level of H4K20me2 was a common hallmark in CRC cell lines 16
20 on H4 (H4K20me2)
Trimethylation of lysine Decreased Levels of H4K20me3 were lower in patients with CRC than 22,30
20 on H4 (H4K20me3) in individuals with normal colonoscopy and those with pre-
cancerous polyps (P =0.02 and P = 0.01, respectively)
Histone phosphorylation
H3S10ph (Phosphoryla- Increased Expression of AURKB promotes the growth and proliferation of 31
tion of Serine 10 on H3 by CRC cells through H3S10ph in the promoter region of Cyclin E1
Aurora B kinase (AURKB)
H2AX (Phosphoryla- Increased Phosphorylation of H2AX to y-H2AX is induced by DNA DSB 32,33

tion of H2A)

and is associated with the development of colorectal cancer

ac, acetylation; CRC, colorectal cancer; DSB, double-strand break; H, histone; me, methylation; ph, phosphorylation.
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HDACSs classification

Class |
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N/

HDAC 11 (347 aa; 39.2 KD)

Class IV

Class lll

L

Class lla
HDAC 4 (1084 aa; 119 KD)
HDAC 5 (1122 aa; 121.9 KD)
HDAC 7 (952 aa; 102.9 KD)
HDAC 9 (1011 aa; 111.3 KD)
Class lIb

" HDAC 6 (1215 aa; 131.4 KD)
HDAC 10 (669 aa’ 71.4 KD)

Fig. 1. The different HDACs are classified according to their respective length and molecular weight.*¢*7 aa, amino acid; HDAC, histone deacetylase; KD,

kilodalton; SIRT, sirtuin.

in the same study revealed that tumor growth was suppressed by
VPA, and apoptosis-related proteins were altered with downregu-
lation of BCL-2 and upregulation of BAX.%%70

Belinostat

Belinostat is a hydroxamic-acid type HDACi used for the treat-
ment of patients with relapsed or refractory PTCL (peripheral T-

Table 2. HDACs and HATs involved in CRC

cell lymphoma) (Fig. 2). Because of its poor metabolic stability,
belinostat showed a limited effect in solid tumors, such as colon
cancer. To overcome this limitation, a prodrug (Cubisbel: compl-
exation of belinostat to Cu) was synthesized and tested in vitro
(in 3 CRC cell lines: Caco-2, SW480, and SW620) and in vivo.
The results demonstrated that this prodrug reduced colon cancer
cell growth via HDAC inhibition and apoptosis induction. Further-

HDAC Cellular localization Effect of enzyme inhibition :ﬁi:r-
HDAC 1 Nucleus Better overall survival 48
HDAC 2 Nucleus Better overall survival 49
HDAC 3 Nuclear; Cytoplasm Better differentiation of tumor cells 48,50
HDAC6 Plasma membrane; Cytoskeleton (microtubule); Cyto- Blocks autophagy flux and tumo- 52
plasm; Aggresome; Endosome; Nucleus (nucleoplasm) : rigenesis of Myc-driven neuroblas-
toma or KRAS-driven CRC and MM
SIRT2 Plasma membrane; Cytoskeleton (centriole, centrosome, micro-  Suppresses angiogenesis in CRC 53
tubule, meiotic spindle, mitotic spindle); Cytoplasm; Mitochon-
drion; Nucleus (nucleoplasm, chromosome, telomeric region)
SIRT3 Cytoplasm; Mitochondrion and mitochon- Inhibits SHMT2-involved serine disorder in 54,55
drial matrix; Nucleus (nucleoplasm) CRC proliferation; Promotes colon sensitivity
to inflammation and tumorigenesis of CRC
SIRT6 Cytoplasm; Nucleus (nucleoplasm, nuclear telo- Enhances aerobic glycolysis and MYC-driven 56
meric heterochromatin, nucleolus) tumor growth in CRC and pancreatic cancer
HAT-MOF Nucleus Downregulation of H4K16ac, by MOF 57
(KAT8) inhibitor DC-MO01-7, inhibites prolifera-
tion of human CRC cells (HCT116)
p300/CBP Nucleus Reduction of histone acetylation and inhibi- 58

tion of the transcription of Hsp70 proteins vi-
tal for the survival of PTEN-/- colorectal cells

CBP, CREB-binding protein; CRC, colorectal cancer; HAT, histone acetyltransferase; HDAC, histone deacetylase; KATS, lysine acetyltransferase 8; MM, multiple myeloma; MOF,
metal-organic framework; MYC,myelocytoma; SHMT2, Serine hydroxyméthyltransferase 2; SIRT, sirtuin.
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Fig. 2. Chemical structures of some representative HDAC inhibitors in CRC (Vorinostat, Valproate, Belinostat, Resminostat, Trichostatin A, Psammaplin A,

Parthenolide, Clorgylin), histone methyltransferase inhibitors in CRC (Ri

bavirin, 3-deazaneplanocin A, UNC1999, Pinometostat, UNC0638, Verticillin A,

GSK343, GSK126), epigenetic modifiers of histone phosphorylation in CRC (WMJ-S-001, Staurosporine, Lestaurtinib, Barasertib, Alisertib). CRC, colorectal

cancer; HDAC, histone deacetylase.

more, the treatment of colon cancer PDTOs (patient-derived tumor
organoids) with Cubisbel led to a significant decrease in cell vi-
ability and reduction of stem cell and proliferation markers.”!

Resminostat

Resminostat is an orally bioavailable HDAC inhibitor (Fig. 2).
It targets different HDACs of classes I and II, including HDACs
1, 3, 6, and 8. It has been shown that Resminostat has an effect
on different types of cancer and is promising because of its toler-
ability, safety, and the possibility to be used in combination with
other drugs like sorafenib and docetaxel.”>73 It has been reported
that Resminostat can kill cancer cells by affecting the AKT sign-
aling pathway, which can lead to the inhibition of proliferation,
migration, and stimulation of apoptosis in CRC cell lines.” Clini-
cal trials are ongoing for advanced CRC, but no results have been
published yet.”®

Psammaplin A (PsA)

PsA is a natural molecule isolated from the Psammaplysilla sponge
(Fig. 2). This symmetrical bromotyrosine-derived disulfide has
various pharmacological activities such as antimicrobial and anti-
tumoral.”® It has been reported that PsA inhibits enzymes like DNA
gyrase, farnesyl protein transferase, DNA topoisomerase, and leu-
cine aminopeptidase.”® Additionally, PsA was found to be a potent
inhibitor of HDAC, especially Class I HDAC.”” This inhibition

DOI: 10.14218/GE.2025.00046 | Volume 25 Issue 1, January 202

is done through the establishment of a coordination link between
the zinc ion and the catalytic pocket of HDAC using a sulfhydryl
group activated by a reducing agent.”’

In CRC, it has been shown that PsA could play a key role. In
fact, it inhibits cell proliferation and upregulates expression of the
TSG gelsolin in a dose-dependent manner. Also, this molecule in-
duces H3 and H4 acetylation, increases expression of p21, a cyc-
lin-dependent kinase inhibitor, and decreases expression of pRb,
cyclins, and CDKs, which promote cell cycle arrest.””-’8

Parthenolide

Parthenolide (HDAC1 and DNMT1 inhibitor) is a natural bioac-
tive sesquiterpene lactone (Fig. 2). It is found mostly in the flowers
and leaves of the feverfew (Tanacetum parthenium) at 0.1-0.2%
of'its dry weight. It has been shown that Parthenolide inhibits nu-
clear factor-kB activation by alkylation of Cys38 of the p65 gene
and exhibits anti-tumor effects in human malignancies.” A study
reported that this natural bioactive molecule inhibits DNMT1 with
an IC50 of 3.5 uM. It acts possibly via alkylation of the proxi-
mal thiolate of Cys1226 of the enzyme catalytic domain by its
y-methylene lactone. Furthermore, this molecule downregulates
DNMT1 expression. This downregulation may be associated with
cell-cycle arrest at SubG1 or the interruption of the binding of a
transcription factor Spl to the DNMT1 promoter. The same study
has shown that Parthenolide leads to the reactivation of the tumor

6
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Table 3. Some epigenetic modifiers of histone acetylation in CRC
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Drug Chemical class Targeted HDAC/HAT Status Selective z:::‘:r-
Vorinostat (SAHA) Hydroxamic acids HDAC-6 FDA (2006) Yes 63
Belinostat (PXD101; PX105684) Hydroxamic acids HDAC-6 FDA (2014) No 71
Panobinostat (LBH589) Hydroxamic acids HDAC-6 FDA and EMA No 96
(2015)
Resminostat (RAS2410; 45C-201) Hydroxamic acids HDAC-6 Phase Il Yes 74
Quisinostat (JNJ-26481585) Hydroxamic acids HDAC-6 Phase I/l No 97
MPTOEQ028 Hydroxamic acids HDAC-6 Phase | No 98
CcuDC 101 Hydroxamic acids HDAC-6 Phase | No 99
Fimepinostat (CUDC-907) Hydroxamic acids HDAC-6 Phase | No 100
Rocilinostat/Ricolinostat (ACY1215) Benzamide HDAC-6 Phase I/II Yes 101
Parthenolide Sesquiterpene lactone HDAC 80,81
Valproic acid Fatty acids HDAC-6 Phase I/1I/1II/IV No 69,70
AR-42 (OSU-HDAC42) Fatty acids HDAC-6 Phase | No 102
Pivanex (AN-9) and AN-7 Fatty acids HDAC-6 Phase Il No 103
EDO-S101 (Tinostamustine) Other HDAC-6 Phase I/11 No 104
Nicotinamide Sirtuins SIRTs Phase IlI 95
DC-MO01-7 Sulfonamide HAT-MOF unknown 105
Anacardic acid Salicylic acid P300/CBP unknown 106
MHY218 Hydroxamic acids HDAC1, 4, and 6 Yes 87,107
WMJ-S-001 Hydroxamic acids HDACI1, 6, and 8 Yes 87,106

CBP, CREB-binding protein; CRC, colorectal cancer; HAT, histone acetyltransferase; HDAC, histone deacetylase; MOF, metal-organic framework; SIRTs, sirtuins.

suppressor HIN-1 gene in vitro associated with its promoter hy-
pomethylation.” Taken together, these results suggest that parthe-
nolide may be an effective anticancer epidrug, in particular against
CRC. In fact, it has been reported that parthenolide, as other natu-
ral products, inhibits HDAC activity in silico, downregulates HIF-
lalpha, and inhibits the NF-kB pathway.80-82

Trichostatin A (TSA)

TSA is a natural product isolated from Streptomyces hygroscopi-
cus (Fig. 2). It is a hydroxamic acid with important pharmacologi-
cal activities.?? This molecule is also known as an inhibitor of the
canonical HDACSs class I and II, which makes it one of the most
promising epidrug agents against cancer.®? It has been reported
that TSA can make cancer cells more sensitive to radiotherapy. In
fact, pre-exposure of head and neck cancer cell lines, HN-3 and
HN-9, to 200 nM of TSA for 18 h marked them radiosensitive.%*

In CRC, Senaei et al.35 showed that Trichostatin can decrease
cell proliferation and promote apoptosis. The same author con-
firmed that this molecule downregulates expression of DNMT1
and HDACI, and upregulates p21, p27, and p57. Also, in human
colon HCT116 cells, it has been shown that TSA, as an HDAC
inhibitor, induces cell cycle arrest via induction of p15 (INK4b)
and inhibition of cyclin D-dependent kinases.3¢

Other hydroxamic acid derivatives

Hydroxamate derivatives have been widely explored for their inter-
esting pharmacological activities, particularly against cancer.?’ It

has been reported by several studies that hydroxamate derivatives
could inhibit HDACs. Sixto-Lépez et al.87 showed that hydroxam-
ic acid derivatives inhibited HDAC 1, HDAC 6, and HDAC 8 with
antiproliferative activity. Among these molecules, MHY218 has
been reported to induce apoptosis, downregulation of NF-xB gene
expression, G2/M phase arrest, and increase of p21 (WAF1/CIP1)
gene expression level.8 Another aliphatic hydroxamate derivative,
WMIJ-S-001, induced apoptosis in HCT116 cells, and its action
was associated with activation of p38 mitogen-activated protein
kinase (MAPK) and AMP-activated protein kinase (AMPK), phos-
phorylation and acetylation of p53, and modulation of proteins
such as cyclin D1, p21 (CIP/WAF1), survivin, and BAX. The same
study showed that WMJ-S-001 inhibited the growth of subcutane-
ous xenografts of HCT116 cells in vivo.%°

Burkholdacs A

Burkholderia is a pathogenic bacterium that has gained increasing
interest because of its genome containing a large number of gene
clusters encoding for cryptic small molecules that can interact with
proteins (Fig. 2). Among those molecules, Burkholdacs A and Bur-
kholdacs B are the most studied because of their interesting activity
as HDAC inhibitors.”® They target HDAC1 and HDACS6 by inhibit-
ing their catalytic activity through reducing disulfide bonds, which
leads to the generation of a free thiol group that interacts with the
catalytic site of the enzyme. Tested against six CRC cell lines, Bur-
kholdacs A was reported to have more affinity for HDACI1 and a
stronger antiproliferative effect than Burkholdacs B.*!
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Table 4. Alterations of histone methylation involved in CRC
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Methylatio Fonction Reference
H3K4me2 Hypermethylation in CRC tissues 110
H3K4me3 Hypomethylation in CRC tissues 21
H3K9me2 Hypermethylation in CRC cell lines and liver metastasis 3
H3K27me2 Hypermethylation in CRC tissues 26
H3K27me3 Hypermethylation in CRC tissues 21
H3K36me2 Hypomethylation in CRC liver metastasis 26
H3K79me2 Hypermethylation in patients with CRC 28
H4K20me2 Hypomethylation in CRC cell lines 16
H4K20me3 Hypomethylation in CRC patients plasma 22

CRC, colorectal cancer; H, histone; me, methylation.

Clorgylin

Clorgylin (hydrochloride) inhibits monoamine oxidase A in a po-
tent, selective, and irreversible way (Fig. 2). It has been demon-
strated that this molecule could be a good candidate as an epidrug
in CRC.”? In fact, clorgylin could restore some silenced TSGs by
DNA demethylation of their promoters or by enriching H3K4me2
and H3K4mel histone marks. Additionally, it has been shown that
clorgylin inhibits LSD1 and decreases cancer cell proliferation.®?

Nicotinamide

Nicotinamide, a water-soluble form of Vitamin B3, is a precursor
of NAD", which makes this molecule a potent inhibitor of enzymes
requiring NAD" for their activities (Fig. 2)°>%4; such as poly-ADP-
ribose polymerases, mono-ADP-ribosyltransferases, CD38, and
cyclic ADP ribose/NADase. Furthermore, this molecule has been
demonstrated to be an inhibitor of the sirtuin family of HDAC
NAD-dependent class 111 enzymes.?>** Some studies suggest that
nicotinamide could play a key role in the prevention and treatment
of some cancers such as non-melanoma skin cancer, head and neck
cancer, laryngeal cancer, and urinary bladder cancer. In addition,
nicotinamide is a safe, well-tolerated, and cost-effective drug.®***

Gupta et al.® showed that nicotinamide could be used as an
adjuvant treatment in CRC since, when paired with carbogen, it
increased the delivery of anticancer drugs to CRC metastases in
patients with advanced cancer.

Other molecules

As summarized in Table 3 with references,3:69-71,74,80.81,87,95-107
many other molecules could be used as epigenetic modifiers pro-
posed for the treatment of CRC. These molecules are Panobinostat,
Quisinostat, Fimepinostat, Rocilinostat, Pivanex (AN-9), EDO-
S101 (Tinostamustine), DC-MO01-7, and Anacardic acid.

Role of HDAC: in synergestic therapy against cancer

Several combined therapies (HDACi + anticancer drug) have
been investigated in clinical trials to treat different types of can-
cers. Among these associations, (belinostat + Cisplatine) in small
cell lung cancer and neuroendocrine cancer,'”® (Entinostat +
Trastuzumab (anti-HER2")) in HER2" breast cancer, (HDACis
(panobinostat or vorinostat), poly ADP ribose polymerase inhibi-
tors (talazoparib or olaparib) and decitabine) in breast and ovar-
ian cancers,'"” (Panobinostat + Bicalutamide/Casodex (androgen
receptor antagonist)) in castration-resistant prostate cancer.'!?
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Against CRC, the association (vorinostat (SAHA, Zolinza) + Hy-
droxychloroquine (autophagy inhibitor)) has been investigated
in advanced renal and CRC in a clinical trial (Clinical Trial reg-
istration number: NCT01023737: Phase I (finished)). The result
showed safety and preliminary efficacy with the maximum toler-
ated dose.!!! Other combinations showed promising results in this
sense, such as (PsA + Cladribine) and (HDACi + ribavirin).!12:113

Epigenetic modifiers of histone methylation in CRC

Histone methylation

Histone methylation consists of the transfer of a methyl group
from S-adenosylmethionine (methyl donor) to the amino acid
residues of histones, especially arginine and lysine. This transfer,
which is a dynamic event similar to histone acetylation, is carried
out by enzymes called histone methyltransferases (see Tables 4
and 5).316:21,22,26.28,110,114-132 Ty CRC, methylation predominantly
occurs on H3 and H4.'3% The extensively studied alterations are
summarized in Table 4.3:16:21,22,26,28,110

Histone methyltransferase inhibitors in CRC

Ribavirin

Ribavirin is a synthetic nucleoside analogue (1-B-D-ribofuranosyl-
1,2,4-triazole-3-carboxamide) used as an antiviral drug against hep-
atitis C infection in combination with interferon (Fig. 2).3* Ribavi-
rin is known as an inhibitor of some enzymes such as eIF4E, inosine
5'-monophosphate dehydrogenase, and histone methyltransferase
zeste homolog 2 (EZH2). Its activity as an inhibitor of enzymes in-
volved in epigenetic mechanisms was evaluated in various cancer
cell lines including CRC cells. The results showed that ribavirin
decreased EZH2 expression, inhibited histone methyltransferase ac-
tivity, and decreased H3K27me3. It also downregulates elF4E and
inosine 5’-monophosphate dehydrogenase type 1.13* Furthermore,
Ge et al.'¥5 showed that ribavirin significantly reduced PRMTS5 and
elF4E levels and decreased H3R8me2 and H4R3me2 in CRC cell
lines. All these results make this molecule a good candidate to be
repositioned as an anticancer epidrug in CRC.

UNC1999

UNC1999 is an orally bioavailable molecule that inhibits EZH2 and
EZH1 with ICy; of 2 nM and 45 nM (Fig. 2), respectively, in a po-
tent and selective way on epigenetic and non-epigenetic targets. It
has been shown that this promising molecule is a potent autophagy
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inducer and has important antiproliferation, differentiation, and
apoptosis effects on leukemia cells. The study of its epigenetic ac-
tivity showed that it specifically suppresses H3K27me3/2.136 In a
study by Lima-Fernandes et al.,'3 it has been reported that inhibi-
tion of H3K27 methylation by EZH2 leads to increased sensitivity
of CRC cell lines to 5-FU. This inhibition was accompanied by
downregulation of H3K27me3 in Indian Hedgehog and decreased
self-renewal of CRC-initiating cells.'3”

Pinometostat (EPZ5676)

Pinometostat (or EPZ5676) inhibits the histone methyltransferase
DOTIL with a Ki of 80 pM (Fig. 2). It acts as an S-adenosyl-
methionine-competitive inhibitor. This molecule also inhibits the
histone methyltransferases EZH2, KMT-4, and KDM1A. Other
studies showed that the combination of pinometostat with 5-FU
and poly ADP ribose polymerase inhibitors, which are used in the
treatment of CRC, has an additive effect accompanied by a de-
crease in H3K79me3 levels.!3® This result is supported by Phase |
clinical trials that showed an inhibitory effect of H3K79 methyla-
tion in cancer by pinometostat.'3

UNCO0638

UNCO0638 has a strong and selective inhibitory effect on G9a and
GLP histone methyltransferases (Fig. 2), with IC50 values of <15
nM and 19 nM, respectively. It also has antiviral activities.'*? In
CRC, this molecule increased the cytotoxic activity of topoisomer-
ase-based treatment with a decrease in H3K9me2 in the PP2A pro-
moter, which activates the PP2A-RPA axis.!4!

Verticillin A

Verticillins are epipolythiodioxopiperazine alkaloids (Fig. 2).
Some molecules of this class exhibit strong cytotoxic effects
against various cancer cell lines.'*? Regarding its epigenetic modi-
fier activity in CRC, it has been reported that Verticillin A selec-
tively inhibits many histone methyltransferases such as SUV39H1,
SUV39H2, G9a, GLP, NSD2, and KMT2A.'43 This effect leads to
a decrease in the level of trimethylation of lysine 9 on H3 in the
FAS promoter, which restores its expression. All of this results in
alleviating 5-FU resistance in CRC. Furthermore, Verticillin A is
less toxic and more efficient than other epigenetic modifiers like
decitabine and vorinostat.!43

GSK343

GSK343 can inhibit EZH2 in a potent and selective manner more ef-
fectively than other histone methyltransferases (Fig. 2). It showed an
IC50 of 4 nM in a cell-free assay (60-fold selectivity against EZH1
and >1000-fold selectivity against others).!#* A recent study found
that the inhibitory effect of GSK343 on EZH?2 is accompanied by a
gradual decrease in H3K27me3, amelioration of intestinal inflam-
mation, and delayed colitis-associated cancer onset, 45146

3-deazaneplanocin A

3-deazaneplanocin A is an adenine analog that inhibits, as a com-
petitive inhibitor (Fig. 2), S-adenosylhomocysteine hydrolase with
a Ki of 50 pM, which modulates chromatin accessibility by in-
hibiting histone methyltransferases such as EZH2.14? This effect
significantly reduces H3K27me3 levels and leads to a notable de-
crease in cell proliferation and migration in CRC.#7

GSK126

GSK126 is a promising molecule since it can inhibit the EZH2
histone methyltransferase in a potent and selective way, with an
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IC50 of 9.9 nM (Fig. 2).'8 Huang et al.'* found that the effect of
GSK 126 on EZH2 suppressed EZH2-mediated H3K27me3, which
results in an increase in myeloid-derived suppressor cells and a
decrease in CD4" and IFN-y* CD8" T-cell levels, both of which are
strongly involved in antitumor immunity in CRC.!4

Epigenetic modifiers of Histone phosphorylation

Alteration of Phosphorylation in CRC

It has been shown that H3S10ph can play an important role in the
regulation of gene transcription. In fact, this epigenetic modification
leads, during interphase, to chromatin relaxation and gene expres-
sion, whereas it inhibits gene expression during mitosis by chroma-
tin condensation. Several kinases can be responsible for H3Ser10
phosphorylation, such as RSK2, MSK1/2, PKA, Aurora kinase,
Nima kinase, and IKK-alpha.'3" One of these kinase pathways, Au-
rora kinase, has been reported to be associated with CRC.!5! In fact,
several studies have shown that Aurora B, which initiates H3S10ph,
is overexpressed in CRC, breast cancer, and various other cancers.!?
Li et al.'>3 reported that AURKB is highly expressed and positively
correlated with Ki-67 expression in CRC, promoting the growth of
CRC cells and xenograft tumors in vivo.

H2A is another histone phosphorylation that was found to cor-
relate with mitotic chromatin condensation. The mammalian vari-
ant of this phosphorylated histone, H2AX, is phosphorylated at
Ser139 when exposed to mutagenic agents.'>* Also, the mRNA
level of H2AX has been reported to be elevated in CRC tissues
compared to normal tissues.!5*

Other phosphorylations of different histone sites have been
reported to play key roles in carcinogenic pathways through me-
diating DNA damage response. These include tyrosine phospho-
rylation of core histones, such as phosphorylation of H2A.X at
Tyrosine 142155156 and phosphorylation of H3 at Tyrosine 41.'57
Additional modifications include H3S10ph, Threonine 11, and
Serine 28; phosphorylation of H4 at Serine 1 and Tyrosine 51;
phosphorylation of H2B at Threonine 129; and phosphorylation of
linker histone H1, subtype H1.2, at Threonine 145.'57 These post-
translational modifications are regulated by specific protein kinas-
es like PKA, CDK, and ATR, and phosphatases such as PP2A.158

Among these histone phosphorylations, the phosphorylation of
H2A.X at Tyrosine 142 has been shown to be involved in CRC.
In fact, Ge et al.'>® reported that Livin (an inhibitor of apoptosis
protein) promotes autophagy in HCT116 and SW480 cells (CRC
cells) via regulation of the phosphorylation of H2A.XY 142.

All these data suggest the involvement of phosphorylation in
chromatin alteration, DNA repair, and genome integrity. Addition-
ally, it has been reported that H24X plays an important role in
cancer as a TSG.!5* Therefore, targeting kinases and phosphatases
responsible for the alteration of histone phosphorylation by natural
or synthetic molecules is another promising approach to explore
for developing epigenetic modifiers to treat cancer, CRC in par-
ticular.

Epigenetic modifiers of histone phosphorylation in CRC
WMIJ-S-001 (hydroxamic acid derivative)

Besides their important effect as HDAC inhibitors, as mentioned
previously in this article, hydroxamate derivatives can also play
a role in histone phosphorylation. In fact, a study by Huang et
al.'% reported that WMJ-S-001, a novel aliphatic hydroxamate de-
rivative, inhibited proliferation and induced apoptosis in HCT116
(CRC cell line) (Fig. 2). This effect was associated with p53 phos-
phorylation and acetylation, among other effects such as AMPK

10
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and p38 MAPK activation. On the other hand, it has been shown
that WMJ-S-001-induced p53 phosphorylation was reduced by
AMPK-p38MAPK signaling blockade. Furthermore, the effect
of WMJ-S-001 was confirmed by an in vivo test that showed that
this molecule suppresses the growth of subcutaneous xenografts of
HCT116 cells.160:161

Barasertib (AZD1152)

AURKB knockdown inhibited CRC proliferation and triggered
cell cycle arrest in the G2/M phase, which could be an interesting
target in CRC treatment. In fact, inhibition of AURKB with a spe-
cific inhibitor called barasertib (or AZD1152) suppressed cyclin
E1 expression in CRC cells and inhibited tumor cell growth (Fig.
2).162 AZD1152 is a dihydrogen phosphate prodrug of a pyrazolo-
quinazoline that is rapidly converted to the active form, AZD1152-
HQPA, in plasma. Barasertib is highly potent (Ki = 0.36 nmol/L),
and its inhibition effect on human CRC growth ranges from 55%
to >100% (P < 0.05) in immunodeficient mice.'®3 Furthermore, a
study by Shah et al.'®* showed that AZD1152 increases the sensi-
tivity of CRC cells to 5-FU.

Staurosporine

The role of H1 and H3 phosphorylation in controlling chromo-
some condensation was studied in the mouse FM3A cell line, and it
was shown that these histone phosphorylations correlated with G2
to M condensation of chromosomes.!®S The same study reported
that staurosporine, a natural product isolated from Streptomyces
staurosporeus, could inhibit the protein kinase responsible for this
phosphorylation during mitosis, which prevents cells from enter-
ing mitosis (Fig. 2). Furthermore, when added to cells arrested
at metaphase, staurosporine causes H1 and H3 dephosphoryla-
tion, which leads to the decondensation of chromosomes.!% An-
other study reported that staurosporine induces apoptosis in CRC
cells. 166

Lestaurtinib

Lestaurtinib is a semisynthetic derivative of indolocarbazole
K252a, structurally related to staurosporine (Fig. 2). It is a potent
inhibitor of kinases such as PRK1 in vitro and in vivo (among oth-
ers). It has been studied for the treatment of various cancers.'®7 It
was shown that Lestaurtinib inhibits H3 threonine phosphorylation
in cell culture.!68

Alisertib

Alisertib (MLN 8237) is a molecule that inhibits Aurora A kinase
in a selective way (IC,, = 1.2 nM), inducing apoptosis and au-
tophagy through targeting the AKT/mTOR/AMPK/p38 pathway
(Fig. 2).' Tested in a panel of CRC cell lines expressing different
KRAS alleles, including Caco-2 (KRAS WT), Colo-678 (KRAS
G12D), SK-CO-1 (KRAS G12V), HCT116 (KRAS GI13D),
CCCL-18 (KRAS A146T), and HT29 (BRAF V600E), it has been
shown that this molecule can modulate the active form of KRAS.
The same study reported that the effect of Alisertib, which acts
via the PI3K/Akt and MAPK pathways, was increased when com-
bined with the MEK inhibitor Selumetinib.!7

Limitations and future challenges

Limitations

Epidrugs, or epigenetic modifiers, are emerging as a new class of
molecules targeting epigenetic alterations involved in cancer onset
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and progression. These epigenetic modifiers are promising because
of their capability to restore the normal function of oncogenes and
TSGs in different types of cancer, including CRC. However, like
any other drug, they present some limitations that researchers need
to overcome. One of these limitations is their adverse effects. In
fact, these molecules target enzymes responsible for epigenetic
mechanisms such as DNMT, HDAC, EZH2, etc., that ensure sev-
eral physiological processes necessary for the proper functioning
of the body. Also, these molecules could inhibit other enzymes,
which could lead to off-target effects. Another gap in this field is
that studies are primarily focused on DNA methylation, histone
acetylation, and methylation. Other histone modifications, such as
phosphorylation, ubiquitination, neddylation, ADP-ribosylation,
and sumoylation, are less explored. Additionally, epigenetic-tar-
geted drugs face other challenges such as clinical efficacy, toxicity,
lack of selectivity, and resistance.!”!

To overcome all these limitations and gaps, research on epige-
netic modifiers has progressed in recent years. In fact, many strate-
gies are under exploration, especially combination therapies and
epigenetic degraders.

Future challenges

Combinations

Combining epidrugs with each other or with other anticancer treat-
ments such as conventional chemotherapy, immunotherapy, pre-
cision medicine, or radiotherapy is the most explored strategy in
cancer treatment. Since histone modifications interact with each
other, molecules targeting different histone alterations could be
combined. In this context, vorinostat and Panobinostat (HDAC in-
hibitors) and BET inhibitors were investigated in association with
kinase inhibitors to increase their anticancer activity.!”? Alisertib
combined with Fulvestrant showed an interesting clinical effect in
patients with breast cancer.!”?

As a therapeutic strategy against cancer, the combination has
two benefits: modulating the characteristics (metabolic and path-
ological) of cancer cells, immune cells, and stromal cells in the
TME,!7* and avoiding drug resistance that could be caused by
epigenetic alterations.!”> Development of dual inhibitors, like
CUDC907, CUDCI101, and 4SC-202, is also considered a promis-
ing strategy to overcome drug resistance, particularly in kinase-
driven cancers.!7¢

Epigenetic degraders

Epigenetic degraders are a novel class of epigenetic-targeted drugs
developed to overcome the limitations of traditional epidrugs such
as enzyme inhibitors. These new epigenetic modulators, which
include PROTACs (proteolysis-targeting chimeras), molecular
glues, and hydrophobic tagging, are increasingly being explored,
and several epigenetic degraders have been developed in the past
five years. Conventional epigenetic modulators (e.g., inhibitors/
agonists) must bind to the active site of their protein targets be-
cause they act by either inhibiting or enhancing target protein ac-
tivity. However, the problem is that drug targets have shown that
only about 20% of them have a targetable active site, which makes
the remaining 80% undruggable.!”’

About 20 PROTAC degraders have been developed in recent
years and are undergoing clinical trials. However, only a few of
them are epigenetic degraders, such as CFT8634, FHD-609, and
RNK05047, for late-stage synovial sarcoma patients.!”® These epi-
genetic PROTACS can target epigenetic readers (e.g., dBET1 for
BET degradation),'”® epigenetic writers (e.g., MS1943 for EZH2
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degradation),!8" or epigenetic erasers (e.g., NP8 for HDAC6 deg-
radation).!8!

Regarding CRC, it has been shown by Zaman et al.'$? that
synthesized cereblon-recruiting PROTACs were able to eliminate
CRC stem cells through inhibition of Wnt/B-catenin signaling by
degrading KDM3A and KDM3B in a selective way.

As for other epigenetic degraders, Moon et al.'®3 reported the
efficacy of IL6-54 and IL6-110 as molecular glues selectively in-
hibiting CDK12/13 in breast and gastric cancer. As a hydrophobic
tagging degrader, Fulvestrant has been reported to have anti-CRC
activity.!84

Other future challenges

Researchers are increasingly interested in other strategies as future
challenges, such as hybrid molecules derived from HDAC inhibi-
tors, targeted delivery systems, and multitarget agents. 85186

Conclusions

Targeting epigenetic alterations is a promising strategy to treat
cancer, CRC in particular, explored by an increasing number of
studies. In this context, many natural and synthetic molecules have
been tested, particularly against CRC cell lines. By correcting al-
terations in histone acetylation, methylation, and phosphorylation,
the normal function of genes controlling pathways involved in
CRC could be restored. Some of these molecules, which could be
used alone or in combination to improve the efficacy of other anti-
cancer drugs or radiotherapy, are now the subject of ongoing clini-
cal trials. In a future article, we aim to explore epigenetic modifiers
that could correct other histone modifications such as sumoylation,
ADP-ribosylation, neddylation, and ubiquitination. Also, combi-
nations and quantitative structure-activity relationships of different
epigenetic modifiers will be analyzed to identify the most efficacy
way to use them.
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